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Networks of dynamical systems
• ALL AROUND US

Power grid Internet Social networks

• MANY OTHERS:

World Wide Web, networking services, economics, material science, . . .

· · ·
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• DRIVEN BY TECHNOLOGICAL ADVANCEMENTS

APPLICATIONS:

wind farms sensor networks
UAV formations
satellite constellations

KEY QUESTION: Interplay between network structure and system performance
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Overview

• MAIN TOPICS:

? Localized control of vehicular formations

? Sparsity-promoting optimal control

? Sparse consensus networks

? Algorithms for leader selection in consensus networks

• CHALLENGES:

? Networks – combinatorial objects

? Optimization – constrained nonconvex problems

• APPROACH:

? Identify classes of convex problems

? Exploit problem structure to develop efficient algorithms
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Localized control of
vehicular formations

Sparsity-promoting optimal control

Sparse consensus networks Algorithms for leader selection
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LOCALIZED CONTROL OF

VEHICULAR FORMATIONS
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Vehicular formations

AUTOMATED CONTROL OF EACH VEHICLE

tight spacing at desired speeds

KEY ISSUES (ALSO IN: CONTROL OF SWARMS, FLOCKS, FORMATION FLIGHT)

? Is it enough to only look at neighbors?

? Are there any fundamental limitations?

OUR CONTRIBUTIONS

? Design of optimal localized controllers

? Performance limitations of localized controllers
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Problem setup
SINGLE INTEGRATOR MODEL

ẋn = un + dn
↑ ↑

control disturbance

• Desired trajectory:

{
x̄n := vd t + n∆

constant velocity vd

• Deviations:
x̃n := xn − x̄n

ũn := un − vd

}
⇒ ˙̃xn = ũn + dn

• Controls: ũ = − Kx̃, K: structured feedback gain
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Use nearest neighbor interactions
• Design forward and backward gains

Relative position feedback:

ũn = − fn (x̃n − x̃n−1) − bn (x̃n − x̃n+1)

ũ = −Kx̃ = −
[
Ff Fb

] [ Cf
Cb

]
x̃

K ∼

 f1 0 0
0 f2 0
0 0 f3


︸ ︷︷ ︸

Ff

 1 0 0
−1 1 0

0 −1 1


︸ ︷︷ ︸

Cf

+

 b1 0 0
0 b2 0
0 0 b3


︸ ︷︷ ︸

Fb

 1 −1 0
0 1 −1
0 0 1


︸ ︷︷ ︸

Cb
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Structured feedback design

state equation: ˙̃x = d + ũ

performance output: z =

[
Q1/2

0

]
x̃ +

[
0
I

]
ũ

control input: ũ = −
[
Ff Fb

] [ Cf
Cb

]
x̃, Ff , Fb − diagonal

OBJECTIVE:

Design diagonal {Ff , Fb} to minimize variance amplification d → z
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minimize J(F ) = trace

(∫ ∞
0

e(−FC)T t
(
Q + CTFTFC

)
e(−FC)t dt

)

subject to F =
[
Ff Fb

]
, Ff , Fb − diagonal

• CHALLENGE:

? Nonconvex problem

• APPROACH:

? Identify convex problems (symmetric gains)

? Homotopy path (non-symmetric gains)
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Design of optimal symmetric gains

symmetric gains:

ũn = − kn (x̃n − x̃n−1) − kn+1 (x̃n − x̃n+1)

ũ = −K x̃, K = KT � 0

CONVEX PROBLEM:

minimize J(K) = trace
(
K + QK−1

)
subject to K = KT � 0, K − tridiagonal

can be formulated as an SDP
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Design of optimal non-symmetric gains

• HOMOTOPY PATH

Step 1: Find Q0 inversely optimal w.r.t. F0

Step 2: Perturbation analysis 0 < ε� 1

Step 3: Followed by homotopy
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• SPATIALLY UNIFORM (K0 = Cf + Cb)
inversely optimal wrt Q0 = K2

0

−P 2
0 + Q0 = 0

K0 = P0

}

Necessary conditions for optimality

(−K)L + L (−K)T = − I

(−K)T P + P (−K) = − (Q + KTK)(
(K − P )LCT

)
◦
[
I I

]
= 0

• PERTURBATION ANALYSIS

0 < ε � 1, P =
∞∑
n=0

εnPn, L =

∞∑
n=0

εnLn, K =

∞∑
n=0

εnKn
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Conveniently coupled equations

O(1) :


−P 2

0 + Q0 = 0

K0 = P0

−K0L0 − L0K0 = −I

O(ε) :


−K0P1 − P1K0 = −(Qd − Q0)[([

Ff1 Fb1
] [ Cf

Cb

]
− P1

)
L0

[
CTf CTb

]]
◦
[
I I

]
= 0

...
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• FIRST-ORDER CORRECTION (WITH Qd = I )

FORWARD/BACKWARD GAINS:

• HOMOTOPY

FORWARD GAINS:
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Part I: Summary and concluding remarks
• LOCALIZED CONTROL OF VEHICULAR FORMATIONS

? Identify convex problem (symmetric gains)

? Inverse optimality + perturbation analysis + homotopy (non-symmetric gains)

• ALSO IN THE DISSERTATION:

? Performance of localized controllers: variance per vehicle in large formations

∗ Symmetric gains: O(N)

∗ Non-symmetric gains: O(
√
N)

? Design of optimal localized controllers for double integrators

• CONTRIBUTIONS:

? Design of optimal localized controllers

? Optimal gains are non-symmetric and spatially-varying

? Performance limitations of optimal localized controllers

Lin, Fardad, Jovanović, IEEE Trans. Automat. Control, 2012
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SPARSITY-PROMOTING OPTIMAL CONTROL
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Controller architectures
CENTRALIZED

-
G0

-
G1

-
G2

-
����

F

6

?

6

?

6

?

best performance
excessive communication

FULLY DECENTRALIZED

-
G0

-
G1

-
G2

-
����

F0 F1 F2

6

?

6

?

6

?

worst performance
no communication

LOCALIZED

-
G0

-
G1

-
G2

-
����

-
F0

-
F1

-
F2

-
����

6

?

6

?

6

?

many possible architectures
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Example: Mass-spring system

PLANT:
[
ṗ(t)
v̇(t)

]
=

[
0 I
T 0

] [
p(t)
v(t)

]
+

[
0
I

]
d(t) +

[
0
I

]
u(t)

CONTROLLER: u(t) = −
[
Fp Fv

] [ p(t)
v(t)

]

FEEDBACK GAINS: Fp, Fv

centralized localized fully decentralized
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗
∗
∗
∗


CHALLENGE: Identify controller architectures for complex interconnected systems
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Sparse feedback synthesis

OBJECTIVE:

design sparse F that minimizes variance amplification d → z

minimize J(F )

subject to card(F ) ≤ k

F =

[
5.1 −2.3 0
0 0 1.6

]
⇒ card (F ) = 3

• DIFFICULT COMBINATORIAL PROBLEM
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Sparsity-promoting optimal control

minimize J(F ) + γ card(F ) γ ≥ 0

γ = 0 ⇒ globally optimal controller:

ATP + P A − P B2R
−1BT2 P + Q = 0

Fc = R−1BT2 P
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DIFFICULTIES:

? J(F ), card (F ): nonconvex functions of F

• Convex relaxations of card (F )

`1 norm:
∑
i, j

|Fij|

weighted `1 norm:
∑
i, j

Wij |Fij|, Wij ≥ 0

• Identify convex problems: design of undirected consensus networks
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Alternating direction method of multipliers

minimize J(F ) + γ g(F )

• Why ADMM?

Observations:

? J(F ) – nonconvex but smooth

J(F ) = trace

(∫ ∞
0

BT1 e(A−B2F )T t
(
Q + FTRF

)
e(A−B2F )tB1 dt

)
? g(F ) – convex but nondifferentiable

g(F ) =
∑
i, j

|Fij|

? J(F ) + γ g(F ) – nonconvex nondifferentiable

• ADMM splits J and g

? minimization of J – descent methods
? minimization of g – analytical solutions
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Introduce additional variable/constraint

minimize J(F ) + γ g(G)

subject to F − G = 0

benefit: split J and g

Form augmented Lagrangian

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+

ρ

2
‖F − G‖2F

F k+1 := arg min
F

Lρ(F ,Gk,Λk) F -minimization

Gk+1 := arg min
G

Lρ(F k+1, G,Λk) G-minimization

Λk+1 := Λk + ρ(F k+1 − Gk+1) Λ-update

? F -minimization: descent method
? G-minimization: elementwise analytical solutions
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Descent method for F -minimization problem

minimize
F

J(F ) +
ρ

2
‖F − U‖2F

U := Gk − (1/ρ)Λk

NECESSARY CONDITIONS FOR OPTIMALITY:

(A − B2F )L + L (A − B2F )T = −B1B
T
1

(A − B2F )T P + P (A − B2F ) = − (Q + FTRF )

F L + ρ (2R)−1F = R−1BT2 PL + ρ (2R)−1U

• ITERATIVE SCHEME

Given F0 solve for {L1, P1} → F1 → {L2, P2} → F2 · · ·
descent direction + line search ⇒ convergence
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Polishing: structured optimal design

minimize J(F )

subject to F ∈ S

? ADMM

{
identifies sparsity patterns S

provides good initial condition for structured design

SOFTWARE

? www.ece.umn.edu/∼mihailo/software/lqrsp/
>> solpath = lqrsp(A, B1, B2, Q, R, options);

http://www.ece.umn.edu/~mihailo/software/lqrsp/
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Mass-spring system

diag (Fv):

γ = 10−4 γ = 0.03 γ = 0.1
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• Performance comparison: sparse vs. centralized

(J − Jc) /Jc:

card (F ) /card (Fc) (J − Jc) /Jc

10% 0.75%
6% 2.4%
2% 7.8%
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Part II: Summary and concluding remarks

• SPARSITY-PROMOTING OPTIMAL CONTROL

? Enabling tools from optimization

? Developed framework to identify controller architectures

Lin, Fardad, Jovanović, IEEE Trans. Automat. Control, 2012 (submitted)

• ALSO IN THE DISSERTATION:

? Augmented Lagrangian approach to structured optimal design

Lin, Fardad, Jovanović, IEEE Trans. Automat. Control, 2011

• CONTRIBUTIONS:

? Identification of controller architectures

? Efficient algorithms for structured controller design

? Sparsity vs. performance
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SPARSE CONSENSUS NETWORKS
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Consensus

• Update using relative differences with neighbors

ẋi = −
∑
j ∈Ni

Fij (xi − xj)

Undirected connected graphs:

F = FT F +
1

N
11T � 0 F1 = 0

Reaching consensus: lim
t→∞

xi(t) =
1

N

N∑
i=1

xi(0)
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Stochastically forced consensus networks
ẋ = −Fx + d

z =

[
Q1/2

−R1/2F

]
x

Q1 = 0 Q +
1

N
11T � 0

Variance amplification d→ z

J(F ) =
1

2
trace

(
Q1/2(F + 11T/N)−1Q1/2 + RF

)

SDP formulation:

minimize
X,F

1

2
trace (X + RF )

subject to

 X Q1/2

Q1/2 F +
1

N
11T

 � 0

F1 = 0
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Design of sparse consensus networks

minimize J(F ) + γ
∑
i, j

Wij|Fij|

subject to F1 = 0 F +
1

N
11T � 0

SDP formulation:

minimize
X,Y, F

1

2
trace (X + RF ) + γ

∑
i, j

Yij

subject to

 X Q1/2

Q1/2 F +
1

N
11T

 � 0

F1 = 0

−Y ≤ W ◦ F ≤ Y
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Design of structured optimal consensus networks

minimize J(F )

subject to F1 = 0 F +
1

N
11T � 0 F ∈ S

SDP formulation:

minimize
X,F

1

2
trace (X + RF )

subject to

 X Q1/2

Q1/2 F +
1

N
11T

 � 0

F1 = 0

F ◦ IcS = 0
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An example

local performance graph: identified communication graph:

z =


Q

1/2
loc

I − 1
N 11T

0

x +


0

0

I

u card (F ) /card (Fc) = 7%

(J − Jc) /Jc = 14%
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c
a
rd

(F
)

γ

(J
−
J
c
)/
J
c

γ

(J
−
J
c
)/
J
c

card(F )/card(Fc)
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Part III: Summary and concluding remarks

• SPARSE CONSENSUS NETWORKS

? Building on sparsity-promoting optimal control framework

? Identify convex problems – SDP formulations

Lin, Fardad, Jovanović, Allerton 2012

• ALSO IN THE DISSERTATION:

? Design of structured optimal consensus networks

? Efficient algorithms by exploiting structures of graph Laplacian

Lin, Fardad, Jovanović, IEEE CDC 2010

• EXTENSIONS:

? Directed trees and lattices – exploiting lower triangular structure

Lin, Fardad, Jovanović, IEEE CDC 2012
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ALGORITHMS FOR LEADER SELECTION
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Hierarchical structure of Internet

Opte project (www.opte.org)

• Resilient to random failures

• Vulnerable to removal of high degree nodes
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Northeast blackout 2003

before: after:

• Caused by a SINGLE power plant (at Cleveland) going offline

Removal of key nodes can affect performance and survival of networks
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Leader selection problem

• CHALLENGE:

? Combinatorial optimization problem

• APPROACH:

? Convex relaxation ⇒ lower bound

? Greedy algorithm ⇒ upper bound

• CONTRIBUTIONS:

? Developing customized algorithm

? Exploiting structure of low-rank modifications
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Leader-follower consensus dynamics

• Undirected connected networks

FOLLOWERS: ẋi = −
∑
j ∈Ni

Fij (xi − xj) + di

LEADERS: ẋi = −
∑
j ∈Ni

Fij (xi − xj) − xi + di
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Minimum variance leader selection problem

ẋ = − (F + Ψ)x + d

F =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 , ψ =


1
0
0
0

 , Ψ := diag (ψ) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



• Assign k leaders to minimize steady-state variance

lim
t→∞

trace
(
E{x(t)xT (t)}

)
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minimize J(ψ) = trace
(
(F + Ψ)−1

)
subject to ψi ∈ {0, 1}, i = 1, . . . , N

1Tψ = k

• FEATURES:

? convex objective function, linear constraint, Boolean constraints

• DIFFICULT: Boolean constraints

• APPROACH:

? convex relaxation ⇒ lower bound

? greedy algorithm ⇒ upper bound
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Convex relaxation
lower bound on J

minimize J(ψ) = trace
(
(F + Ψ)−1

)
subject to ψi ∈ [0, 1], i = 1, . . . , N

1Tψ = k

SDP formulation:

minimize trace (X)

subject to
[
X I
I F + Ψ

]
≥ 0

ψi ∈ [0, 1], i = 1, . . . , N

1Tψ = k

without exploiting structure: O(N4)

n× n matrix and m variables, O(max{mn3,m2n2,m3}), n = m = N ⇒ O(N4)
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minimize J(ψ) = trace
(
(F + Ψ)−1

)
subject to ψi ∈ [0, 1], i = 1, . . . , N

1Tψ = k

Logarithmic barrier function:

minimize q(ψ) = τ trace
(
(F + Ψ)−1

)
+

N∑
i=1

(
− log(ψi) − log(1− ψi)

)
subject to 1Tψ = k

NEWTON DIRECTION: Form (F + Ψ)−2 ⇒ O(N3)
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Greedy algorithm

• One-leader-at-a-time

J is+1 = trace
(
(Fs + eie

T
i )−1

)
? RANK-1 UPDATE: ⇒ O(N2) per leader

• Swap a leader and a follower

Jij = trace
(
(Fk − eie

T
i + eje

T
j )−1

)
? RANK-2 UPDATE: ⇒ O(N2) per swap

• Total cost: O(max{(k + p)N2, N3}), k, p� N ⇒ O(N3)
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A network with 25 nodes

1 

2 

4 

10 

5 

6 

3 

7 

8 

9 

12 

11 

13 

14 

15 

16 

17 18 

22 
25 

23 

24 

21 

19 

20 

Greedy algorithm finds global solutions

k leaders
1 13
2 8, 25
3 8, 16, 25
4 3, 7, 16, 25
5 3, 7, 9, 16, 25
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A 2D lattice
J

• Leaders: Greedy algorithm

k = 1 k = 2 k = 3 k = 8 k = 20
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Degree-based-heuristics vs. greedy algorithm

k = 5 J = 27.7 k = 5 J = 15.0

k = 40 J = 19.0 k = 40 J = 9.5
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Part IV: Summary and concluding remarks

• ALGORITHMS FOR LEADER SELECTION PROBLEM

• CHALLENGE: combinatorial optimization problem

• APPROACH:

? Convex relaxation ⇒ lower bound

? Greedy algorithm ⇒ upper bound

• ALSO IN THE DISSERTATION:

? Noise-free leader selection problem

∗ Identify the source of nonconvexity in objective function

∗ Propose LMI-based relaxation

Lin, Fardad, Jovanović, IEEE Trans. Automat. Control, 2012 (submitted)
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